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1 Introduction 
Super Smart Society (Society 5.0)1) and Bioeconomy2) get attention recently as smarter or more advanced 
concept to realize pre-symptomatic state, healthy life expectancy, circular economy, and energy efficiency and 
conservation. To adapt to this trend, industry transformation is required, such as product design has more 
efficiency or manufacturing process is fundamental reformed by smart cells or genetics. Conversely, many 
systems become more large-scale and complex according to an appearance of System of Systems (SoS), which 
is a new kind of system consisting of connected various systems with operational autonomy and control 
autonomy (e.g., distribution system, medical system, power and energy system, or railway system).  

From this background, the need for practical optimization is growing more urgent. Achieving this needs 
an integrated methodology by combination of not only on optimization theory but also surrounding 
technologies, such as simulation, artificial intelligence-based (AI) modeling, and computing technologies; e.g., 
general-purpose graphics processing units (GPGPU). This type of optimization is data-driven approach using 
on-line data obtained from simulator or sensor, called black-box optimization (BBO). BBO uses only design-
variable value and its objective-function value because the objective function is black-box or expensive 
function with its unknown landscape. Mathematical programming, which is a classical optimization 
algorithm’s class using analytical information about the objective function (e.g., gradient or Hessian matrix) 
and its properties (e.g., convexity or variable dependency), cannot be applied to BBO. Therefore, BBO 
technology with an ability to adapt to quickly change of the environment surrounding optimization is required. 
This article focuses some representative approaches of BBO especially metaheuristics3). This article reviews 
its overview, desirable properties, constraint-handling techniques, and its applications based on recent 
research trends. 

Mathematical notations used in this article are as follows; ℝ denotes the set of real numbers, ℕ denotes 

the set of natural numbers, ∅ denotes the empty set, respectively. [𝑎, 𝑏], (𝑎, 𝑏) denote the closed interval and 

the open interval between 𝑎 and 𝑏, where 𝑎, 𝑏 ∈ ℝ (𝑎 < 𝑏). The probability distributions 𝓝,𝒰(𝑎, 𝑏) denote 
the multi-variable standard normal (or gaussian) distribution and the continuous uniform distribution within 
[𝑎, 𝑏]. 
 

2 Black-box optimization 
This article focuses on an unconstrained optimization problem minimizing an objective function 𝑓(𝒙), but 

Section 4 does on a constrained optimization problem minimizing the objective function 𝑓(𝒙) such that 

constraints 𝑔఑(𝒙) ≤ 0 (𝜅 = 1,2, … , 𝐾)1; where 𝒙 ∈ ℝே denotes the design variable, 𝑓: ℝே → ℝ denotes the 

objective function, and 𝑔఑(𝒙): ℝே → ℝ (𝜅 = 1,2, … , 𝐾) denotes the 𝐾 constraint functions, respectively. 
Direct-search or derivative-free method, and sequential model-based optimization (SMBO) are global 

optimization or BBO approach. They search the global optima efficiently in black-box or expensive function 
using only design-variable value and its objective-function value, not the gradient to reduce a risk of getting 
trapped at low-grade local optima. While the direct-search or derivative-free method search the optima in the 
objective function directly (e.g., metaheuristics or evolutionary algorithm), SMBO does it indirectly using a 

                                                 
1 Constraint condition is classified as unequally and equally constraints, but this article only focuses on unequally 
constraints because equally constraints are often relaxed to unequally constraints by introducing small tolerance. 



 

 

surrogate function sequentially, i.e., response surface methodology4). The procedure of SMBO is the 
following: 

(i) Step 1: generating a surrogate function to approximate the objective function based on obtained 
data set of the design variables 𝒙 and the objective-function values 𝑓(𝒙). 

(ii) Step 2: obtaining the temporary optima in the surrogate function. 
(iii) Step 3: sampling based on the obtained optima. 

For example, Bayes optimization or Kriging method5) is a well-known SMBO and iterates the following steps: 
generating a probabilistic surrogate function from sample data (e.g., Gaussian process regression); 
constructing an acquisition function corresponding to the surrogate model and searching its maxima (e.g., 
expected improvement); and sampling next candidate solutions around the maxima. SMBO is expected to 
advance by combination of AI-based modeling (e.g., the kernel method, ensemble learning, or deep learning); 
global optimization algorithm or the direct-search method2; and sampling techniques6). 

This article reviews the direct-search method as a core BBO technique, especially metaheuristics. 
Metaheuristics (or evolutionary algorithm) is a heuristic algorithm framework inspired by nature or physical 
phenomena; e.g., genetic algorithm and particle swarm optimization3). In metaheuristic algorithms, multiple 
search points (or population) search the global optima by updating or sampling iteratively in the solution 
space. 𝑖 = 1,2, … , 𝑚 denotes the index of search points, 𝑘 ∈ ℕ denotes the iteration counter, 𝑚 ∈ ℕ denotes 

the number of search points, 𝒙௜(𝑘) ∈ ℝே denotes the position of the 𝑖-th search point at 𝑘, respectively. They 
have the following features: 

• Approximation method: which finds approximate solutions with highly optimality in a practical 
amount of time; 

• Stochastic method: which uses pseudo-random numbers and can deal with uncertain values; 
• Multi-point type search method: which has multiple search points interacting with each other. 

Especially, they are expected as an effective approach to BBO from the viewpoint of the stochastic and multi-
point type search method having advantages of reducing a risk of getting trapped at low-grade local optima in 
multimodal objective function, and benefiting from the evolution of parallel computing using GPGPU. 
 

3 Robustness and adaptability for black-box optimization 
This section provides (1) robustness and adaptability of metaheuristics as effective properties in BBO and (2) 
example algorithms with their properties. 

3.1 Robustness and adaptability of metaheuristics 

It is important or required for users to select an appliable and appropriate algorithm and set its tunable 
parameters so that they are adapted to the class and analytical properties of the optimization problem. These 
properties make some difficulties as the following: 

                                                 
2 It needs global optimization for the surrogate function in SMBO to be complex or non-linear assuming that the 
objective function is non-convex or multimodal. 



 

 

• Separability (Decomposability) / Non-separability (Dependency): whether there is an existence of 
cross term between each coordinate of the search space in the objective function. 

• Well-Scaling (Well-Conditioning) / Ill-Scaling (Ill-Conditioning): whether different directions in 
the search space show a largely different sensitivity in their contribution to the objective function. 

• Uni-Modal (Convex) / Multi-Modal (likely Non-Convex): whether there are multiple local 
optimal solutions in the landscape of the objective function. 

• Origin-Independency / Origin-Dependency: whether the search depends on translation of the 
origin in the solution space. 

Conversely, BBO makes it impossible for users to know and use this information in advance. When applying 
metaheuristics to BBO, the search performance and parameter setting are affected by these difficulties. From 
this reason, users need to perform inefficient trial-and-error engineering. Therefore, it is desirable that 
metaheuristics for solving BBO have robustness and adaptability. In this context, the meaning of robustness 
and adaptability are the following inspired by modern control theory: 

• Robustness: is the algorithm’s properties which the search performance is maintained as the 
problem’s properties changing even with its parameter being fixed during the search process. 

• Adaptability: is the algorithm’s ability of dynamically tuning its parameter so that it adapts to the 
problem’s properties gradually during the search process. 

Transformation invariance has been proposed as a property producing robustness. If we assume that a 
pseudo-random number sequence during the search process holds the same, transformation invariance is the 
quality of the search performance being reproducible with respect to transformation of the solution space or 
objective function (i.e., producing the same or similar results)7). Whether metaheuristic algorithm has 
transformation invariance depends on the case. When an algorithm lacks invariance to a certain 
transformation, it is shown that significant performance changes depending on this transformation. 
Transformation invariance is distinguished between two-types: invariance to transformations of the solution 

space and the objective function value 𝑓. Invariances giving an effectiveness of BBO are the following: 

• Similarity invariance: which is invariant property to similarity transformation 𝑇: ℝே → ℝே of the 

search space; i.e., 𝑇: 𝒙 ↦ 𝛼𝒙, where 𝛼 ∈ ℝ. 

• Scale invariance: which is invariant property to scaling 𝑇: ℝே → ℝே of the search space, including 

similarity transformation; i.e., 𝑇: 𝒙 ↦ 𝑫𝒙, where 𝑫 ∈ ℝே×ே denotes a diagonal matrix. 

• Rotational invariance: which is invariant property to rotation 𝑇: ℝே → ℝே of the search space; 

i.e., 𝑇: 𝒙 ↦ 𝑫𝒙, where 𝑫 ∈ ℝே×ே denotes a rotation or orthonormal matrix. 

• Linear invariance: which is invariant property to linear transformation 𝑇: ℝே → ℝே of the search 

space, including scaling and rotation; i.e., 𝑇: 𝒙 ↦ 𝑫𝒙, where 𝑫 ∈ ℝே×ே denotes a representation 
matrix. 

• Translation invariance: which is invariant property to translation 𝑇: ℝே → ℝே of the search 

space; i.e., 𝑇: 𝒙 ↦ 𝒙 − 𝒕, where 𝒕 ∈ ℝே  denotes a translation vector. 



 

 

• Affine invariance: which is invariant property to affine transformation 𝑇: ℝே → ℝே of the search 

space, including linear transformation and translation; i.e., 𝑇: 𝒙 ↦ 𝑫𝒙 − 𝒕, where 𝑫 ∈ ℝே×ே, 𝒕 ∈

ℝே denote a linear-transformation matrix and a translation vector, respectively. 

• Monotonic invariance of 𝑓: which is invariant property to monotonic or order preserving 

transformation 𝑇: ℝ → ℝ of the objective function value 𝑓; e.g., 𝑇 satisfies 𝑇(𝑓ଵ) ≤ 𝑇(𝑓ଶ) 

whenever 𝑓ଵ ≤ 𝑓ଶ, where 𝑓ଵ, 𝑓ଶ ∈ ℝ. 

To deal with difficulties or necessary properties (e.g., ill-scalability, non-separability, and origin-dependency 
in the solution space), affine invariance (including scale invariance, rotational invariance, and translation 
invariance) is important because the search efficiency preserves regardless of them. Monotonic invariance of 
the objective function also is important because the search efficiency may preserve between non-convex (uni-
modal) and non-continuous objective function, and convex continuous objective function. Invariance is 
extremely useful in evaluating the performance of heuristic methods because it can generalize to the complete 
class of problems induced by the invariance. 

Adaptive parameter tuning has been proposed as a function producing adaptability. Intensification and 
diversification are well-known search strategies in metaheuristics and lead to outstanding performance3). It is 
important to set and tune parameters appropriately because search dynamics can change depending on 
parameter. Parameter tuning is distinguished between the following two-types inspired by system control 
theory8):  

• Feedforward tuning: which gives a parameter-tuning schedule before searching and tunes 
parameter following this. 

• Feedback tuning: which gives a parameter-tuning rule in response to the search state or dynamics 
during the search process. 

The search dynamics can be evaluated based on the search history of the set of search points. Therefore, 
adaptive parameter-tuning rule based on the search history is expected to reduce the effort in parameter-
setting and tuning and lead to excellent performance. Kanemasa and Aiyoshi (2012)8) shows the above concept 
of parameter tuning and designs a new adaptive parameter rule providing excellent performance by genetic 
programming.  

Additionally, parameter-tuning rules may have an influent on an algorithm’s invariance. For this reason, 
invariance-based design guidelines for parameter-tuning rules are the following: 

(i) Guideline A: when an algorithm has a certain invariance, we add tuning rules so as to preserve 
the invariance; 

(ii) Guideline B: when an algorithm lacks a certain invariance, we add tuning rules so as to 
compensate for the invariance. 

Accordingly, metaheuristics with transformation invariance and adaptive parameter-tuning rules are thought 
to result in good robustness and adaptability for BBO.  

3.2 Example metaheuristics with robustness and adaptability 

This subsection describes example metaheuristics following the above guidelines; the covariance matrix 
adaptation evolution strategy and the adaptive particle swarm optimization with rotational invariance.  

3.2.1 Covariance matrix adaptation evolution strategy (CMA-ES) 



 

 

Evolution strategy (ES) is a metaheuristic algorithm inspired by the evolution process in biology or nature. In 
ES, a single search point moves through random walk distributed according to the normal distribution. The 
update rules of ES are expressed by Equations 1 and 2. 

𝒙ෝ = 𝒙(𝑘) + 𝜎𝒔 (1)

 𝒙(𝑘 + 1) = ቊ
𝒙ෝ;  𝑓(𝒙ෝ) ≤ 𝑓൫𝒙(𝑘)൯

 𝒙(𝑘); otherwise
 (2)

 

Here, 𝒔 ∈ ℝே  denotes a random vector distributed according to the multi-variable standard normal 

distribution 𝓝, 𝜎 > 0 denotes the scale parameter. ES lacks similarity and scale invariance, so it is typically 

used with an adaptive parameter-tuning rule called one-fifth success rule, tuning the scale parameter 𝜎 
according to the improvement frequency of the search point. 

Conversely, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been developed as a multi-

point ES and various versions of CMA-ES have been proposed; e.g., (𝜇/𝜇௪, 𝜆)-CMA-ES9). A search steps of 
a typical CMA-ES using weighted recombination, covariance matrix adaptation (CMA), and step-size 
adaptation (SSA) is the following:  

(i) Step 1: sampling the next position of search points from the normal distribution according to 

Equation 3, which has a covariance matrix 𝑪(𝑘) ∈ ℝே×ே and a scale parameter 𝜎(𝑘) > 0. 

𝒙௜(𝑘 + 1) = 𝒎 + 𝜎(𝑘)𝑨𝜦
ଵ
ଶ𝒔௜ (3) 

(ii) Step 2: deriving a mean vector 𝒎 ∈ ℝே using weighted recombination of the search points with 

superior objective-function value 𝑓(𝒙௜(𝑘 + 1)). 

(iii) Step 3: updating the parameters 𝑪(𝑘) and 𝜎(𝑘) according to the search state using CMA and SSA. 

Here, 𝒔௜ ∈ ℝே  denotes a random vector distributed according to the multi-variable standard normal 

distribution 𝓝 , 𝑨 = (𝒂ଵ, 𝒂ଶ, … , 𝒂ே) ∈ ℝே×ே denotes the basis transformation matrix, and 𝜦 =

diag(𝜆ଵ, 𝜆ଶ, … , 𝜆ே) ∈ ℝே×ே denotes the eigen matrix, respectively. {(𝒂ଵ, 𝜆ଵ), (𝒂ଶ, 𝜆ଶ), … , (𝒂ே, 𝜆ே)}(𝜆ଵ ≥

𝜆ଶ ≥ ⋯ ≥ 𝜆ே) are pairs of the eigenvector and eigenvalue of the covariance matrix 𝑪(𝑘). 
CMA-ES has the following meaningful features for BBO: 

• To have affine transformation invariance and monotonic invariance of the objective function 𝑓; 

• To realize intensification and diversification-based search strategy by adaptive parameter-tuning 
rules so as to the search points move to a superior region obtained through the search process; 

• To be provided recommended values for all parameters. 

Parameter-tuning rules of ES following the design guideline B in Subsection 3.1 give an equivalent effect of 
adding affine invariance to ES; e.g., the one-fifth success rule, CMA, and SSA. It is expected that CMA-ES 
has high search performance according to the fact that an advanced version of it is highly ranked in BBO 
competitions called Black-Box Optimization Benchmarking workshop (BBOB)10). 

3.2.2 Adaptive particle swarm optimization with rotational invariance 

Particle swarm optimization (PSO)3) is a metaheuristic algorithm inspired by swarm intelligence in biology. 
The update rules of PSO are expressed by the following equations. 



 

 

𝒗௜(𝑘 + 1) = 𝑤𝒗௜(𝑘) + 𝑐ଵ𝑹ଵ ቀ𝒑௜(𝑘) − 𝒙௜(𝑘)ቁ + 𝑐ଶ𝑹ଶ ቀ𝒑௚(𝑘) − 𝒙௜(𝑘)ቁ (4)

 𝒙௜(𝑘 + 1) = 𝒙௜(𝑘) + 𝒗௜(𝑘 + 1) (5)

 𝒑௜(𝑘) = argmin
𝒙೔(఑)

൛𝑓(𝒙௜(𝜅))|𝜅 = 1,2, ⋯ , 𝑘ൟ (6)

𝒑௚(𝑘) = argmin
𝒑೔(௞)∈𝒫(௞)

𝑓 ቀ𝒑௜(𝑘)ቁ (7)

𝒫(𝑘) = ൛𝒑𝑖(𝑘)ห𝑖 = 1,2, ⋯ , 𝑚ൟ (8)

 

Here, 𝑤, 𝑐ଵ, 𝑐ଶ > 0 denote PSO’s parameters, 𝑹ℓ = diag(𝑅ℓଵ, 𝑅ℓଶ, … , 𝑅ℓே) ∈ ℝே×ே(ℓ = 1,2) denotes a 

random number matrix, and 𝑅ℓ௡(𝑛 = 1,2, … , 𝑁)  denotes random number distributed according to the 

uniform distribution 𝒰(0,1), respectively. Especially, 𝒑௜(𝑘) ∈ ℝே denotes a personal-best solution called p-
best, 𝒑௚(𝑘) ∈ ℝே denotes the group-best solution called g-best. 

PSO has room for improvement in both of adaptability and robustness to various conditions. Yasuda et 
al. (2008)11) have proposed the swarm activity 𝑃 as a metrics of the search state in the terms of intensification 
and diversification, and derived accurately the stable and unstable regions in the PSO’s parameter space using 
it. The swarm activity 𝑃 is expressed by Equation 9. 

 𝑃(𝑘) =
1

𝑚√𝑁
෍ฮ𝒗௜(𝑘)ฮ

௠

௜ୀଵ

(9) 

Moreover, the activity feedback PSO (AFPSO) is proposed as a new-type PSO with an adaptive parameter-

tuning rule to control the swarm activity 𝑃 during the search process11). The update rule of AFPSO consists 

of PSO and a tuning rule for the inertia parameter 𝑤. The tuning rules for 𝑤(𝑘) are expressed by Equations 
10 and 11. 

𝑤(𝑘 + 1) = 𝑤(𝑘) + sgn൫𝑃(𝑘) − 𝑃௧(𝑘)൯𝛥𝑤 (10)

𝑃௧(𝑘) =
𝜀ୱ୲ୟ୰୲

√𝑁
൬

𝜀ୣ୬ୢ

𝜀ୱ୲ୟ୰୲
൰

௞
௞ౣ౗౮ ‖𝜸୫ୟ୶ − 𝜸୫୧୬‖ (11)

 

Here, 𝜸୫ୟ୶, 𝜸୫୧୬ ∈ ℝே  denote the vectors determined from the initial search points, 𝑘୫ୟ୶ ∈ ℕ denotes the 

iteration counter max, and sgn: ℝ → {−1,1} denotes the sign function, respectively. After updating 𝑤(𝑘) 

with Equation 10, we revise it so that 𝑤(𝑘) ∈ [𝑤୫୧୬, 𝑤୫ୟ୶]. This tuning rule adjusts 𝑤(𝑘) so that the swarm 

activity 𝑃(𝑘) follows a target value 𝑃௧(𝑘). It is shown that AFPSO has better search performance than PSO 
with various parameter-tuning rules11).  

However, Kumagai and Yasuda (2017 and 2019)12), 13) have pointed out that AFPSO has scale invariance, 
translation invariance, and monotonic invariance of 𝑓, but lacks rotational invariance such as PSO with 
various parameter-turning rules through mathematical proofs and numerical simulations. On that point, the 
adaptive PSO with rotational invariance using correlativity (adaptive CRI-PSO) have proposed as a new-type 
PSO with both of rotational invariance and the adaptive parameter-tuning rule13). The update rules of the 
adaptive CRI-PSO are basically the same as that of AFPSO, except that Equation 4 is revised to Equation 12. 

𝒗௜(𝑘 + 1) = 𝑤(𝑘)𝒗௜(𝑘) + 𝑐ଵ𝑨𝑹ଵ𝑨୘ ቀ𝒑௜(𝑘) − 𝒙௜(𝑘)ቁ + 𝑐ଶ𝑨𝑹ଶ𝑨୘ ቀ𝒑௚(𝑘) − 𝒙௜(𝑘)ቁ (12)  



 

 

Here, 𝑨 = (𝒂ଵ, 𝒂ଶ, … , 𝒂ே) ∈ ℝே×ே  denotes the basis transformation matrix, and {𝒂ଵ, 𝒂ଶ, … , 𝒂ே} are the 

eigenvectors of the covariance matrix based on the p-best distribution 𝒫(𝑘). In the tuning rules for 𝑤(𝑘) of 

the adaptive CRI-PSO, parameters 𝛥𝑤, 𝜀ୱ୲ୟ୰୲, 𝜀ୣ୬ୢ, 𝑤୫୧୬, 𝑤୫ୟ୶ > 0 are added3. 

The adaptive CRIPSO controls the swarm activity 𝑃(𝑘) while determining the perturbation direction 

from the p-best distribution 𝒫(𝑘). In the above the parameter-tuning rule, controlling the search state 
according to the ideal ensures that the intensification and diversification-based search strategy is realized. This 
strategy is expected to give the adaptive CRI-PSO highly adaptation. Additionally, the adaptive CRIPSO 
consists of Equation 12 and the above parameter-tuning rule; and has similarity, rotational, and translation 

invariance in the solution space and monotonic invariance of 𝑓. But, because adding parameter-tuning rule 
preserves these invariances, this satisfies the design guideline A in Subsection 3.1. Thus, it is expected to have 
high robustness and adaptability. In fact, the search performance of the adaptive CRI-PSO is shown to be 
superior to that of PSO and AFPSO through numerical experiments11). 

CMA-ES and the adaptive CRI-PSO are common in the following points: 

(i) They get transformation-invariance by using the covariance matrix based on the solution set 
obtained in the search process. 

(ii) They get adaptability by parameter-tuning according to the intensification and diversification-based 
search strategy. 

 

4 Constrained black-box optimization 
The direct-search method including metaheuristics is considered to be unconstrained optimization problems, 
but we need to consider constraints in real-world use. This section describes classes of constraints in BBO 
and methods for handling them.  

4.1 Classes of constraints in BBO  

This section focuses on constrained optimization problem in BBO. A solution satisfying all constraints is 
called feasible solution, and a solution not satisfying a constraint is called infeasible solution or constraint-
violating solution. The notation ℱ denotes the set of feasible solutions called feasible region. 

Constraints can be classified according to their analytic properties and formal properties. In terms of 
analytic properties, we can classify constraints as either linear constraints including non-negative constraints 
and upper/lower bound constraints, or non-linear constraints4. In terms of formal properties, we can classify 
constraints including simulation-based optimization or BBO based on the form. QRAK14) is a taxonomy rule 
with four following perspectives:  

                                                 
3 Kumagai and Yasuda (2019)13) gives the following recommended values to for these parameters. 𝜸୫ୟ୶, 𝜸୫୧୬ are 
determined by the region for initial search points. 𝑤୫ୟ୶, 𝑤୫୧୬ should be to across the boundary line between stable 
and unstable regions in PSO’s parameter space. It is pointed out that the boundary line is located inside the region 

𝑤 ∈ [0.5,1.0] while 𝑐ଵ = 𝑐ଶ = 1.4955 through parameter analysis. 
4 Besides linear constraints and non-linear constraints, there are discrete constraints and level-sets constraints 
determined by objective-function values. 

 



 

 

• Quantifiable (Q) / Nonquantifiable (N): whether the degree of constraint violation can be 
quantified; 

• Relaxable (R) / Unrelaxable (U): whether a constraint-violating solution can be evaluated; 

• A priori (A) / Simulation-based (S): whether a simulation is needed to evaluate a solution; 

• Known (K) / Hidden (H): whether the existence of constraints is known. 

Constraints can be classified to 16 types according to the QRAK rule5. 
This includes situations such as when constraint-violating solutions cannot be evaluated due to reasons 

on simulator’s side, or when the simulation does not have completed successfully. In practical use, many cases 
are QRAK or QRSK constraints. The reason for this is that a binary constraint meaning whether a solution 
is feasible or infeasible can be quantified as numerical constraint violation, or constraint-violating solutions 
can be evaluated in some reasonable way. It would be meaningful to know classes of constraints in BBO more 
broadly, and to consider handling methods matching them. Subsections 4.2 and 4.3 will explain methods for 
handling QRAK or QRSK constraints. 

4.2 Classical method for constraint handling  

Classical method for constraint handling is a type of problem-transformation method called the penalty-
function method. If the class and properties of objective or constraint functions are clear, you can apply a 
method for constraint handling that matches the class of problem. For example, if the objective function and 
constraint functions are convex, a convex optimization method that uses analytic information about their 
functions (gradient or Hessian matrix) can solve this problem by constructing a new convex objective function 
introduced penalty function; and converting the problem to an unconstrained optimization, which called the 

augmented Lagrangian function. Equation 13 shows the augmented Lagrangian function 𝐿: ℝே → ℝ with a 
penalty function. 

𝐿(𝒙) = 𝑓(𝒙) + 𝜆𝜙(𝒙) (13) 

Here, 𝑓: ℝே → ℝ  denotes the objective function, 𝜙: ℝே → ℝ  denotes the penalty function, and 𝜆 > 0 

denotes the penalty coefficient, respectively. Many definitions for penalty function 𝜙 are possible, but a typical 
definition is formulated as Equations 14 and 15. 

𝜙(𝒙) = ෍ 𝛺఑(𝒙)

௄

఑ୀଵ

(14)

 𝛺఑(𝒙) = max{𝑔఑(𝒙), 0} (15)

 

An amount of constraint violation 𝑣(𝒙), which amount of violating a constraint or all constraints, is basically 

defined by 𝑣(𝒙) = 𝜙(𝒙) and 𝑣఑(𝒙) = 𝛺఑(𝒙). 

4.3 Methods for constraint handling in BBO 

4.3.1 Constraints handling techniques 

                                                 
5 Actually, the QRAK rule classifies constraints into nine types because it is not possible to calculate or quantify 
numerical constraint-violation value if the existence of them is unknown. 



 

 

The classical penalty-function method is not effective for constrained optimization problem including the 
black-box or non-convex objective function and constraint functions. Difficulties in this class of problem are 
the following: 

(i) Because there are multiple local optimal solutions in the feasible region ℱ being non-convex or 
disconnected, it needs a global search capability. 

(ii) Typically, because the global optimal solution is located on the boundary of the feasible region ℱ, 
it needs an efficient search on this boundary. 

The constraint handling techniques (CHTs) have been developed as methods expanding the applicable scope 
of metaheuristics to this class of problems and cope with the above issues15), 16). Metaheuristic algorithm searches 
the global optimal solution by selection superior solutions. The selection operation evaluates and compares 
solutions obtained through multi-point search according to a metrics called fitness function 𝑆(𝒙). While the 

selection for unconstrained optimization uses the fitness 𝑆 defined by the objective-function value 𝑓, CHTs 

use the fitness 𝑆 defined by the objective-function value 𝑓 and amount of constraint violation 𝑣. Additionally, 
it has been pointed out that using constraint-violating solutions is important for improving search efficiency in 
constrained BBO17). According to the above discussion, CHTs can be largely classified depending on the 
following viewpoint: 

(i) CHTs can be categorized as penalty-based, separatist-based, or multi-objective-based method 

depending on the definitions of fitness 𝑆.  
(ii) CHTs can be categorized as “none”, “inexplicit”, or “explicit” class depending on degree of 

utilization of constraint-violating solutions. 

Table 1 shows summary of studies on CHTs categorized based on these criteria. We will provide a description 
of each approach in next subsection and beyond. 

4.3.2 Penalty-based CHT 

The penalty-based CHT uses the augmented Lagrangian function 𝐿 defined in Equation 13 as the fitness, but 

it differs from classical penalty functions in terms of the way it treats the penalty coefficient 𝜆. The death 
penalty16), static penalty18), and dynamic penalty19) have been proposed as the penalty-based CHT. The death 

penalty assigns an extremely bad value (or an infinitely large value) to the penalty coefficient 𝜆 for constraint-

violating solutions, and searches only using feasible solutions. The static penalty assigns a constant to 𝜆 and 

the dynamic penalty increases 𝜆 according to a given schedule during the search process. However, the search 

Table 1 Summary of studies on constraint handling techniques 

− Penalty-based CHT Separatist-based CHT Multi-objective-based CHT 

None Death penalty16) − − 
Inexplicit Static penalty18), Feasibility rule16),  

 Dynamic penalty19), Stochastic ranking22), − 

 Adaptive penalty20) 𝜀 constraint method23), 
  GCR25), HSR26), MCR27)  
Explicit ASCHEA21) MCODE24), Two-phase framework30), 

  TNSDM28) IDEA17), DeCODE32), 

   Adaptive Weighted MOEA/D33) 

 



 

 

performance is deteriorated, and a feasible solution cannot be obtained without a properly set or tuning for 
the penalty coefficient 𝜆. For example, the fitness function 𝐿 highly depends on scale differences between 
constraint functions because of lacking monotonic invariance of the objective function and constraint 
functions if the amount of constraint violation 𝑣 is defined in Equation 14.  

On that point, the adaptive penalty20) and ASCHEA21) have been proposed as the penalty-based CHT for 
adaptively tuning the penalty coefficient during the search process. In the adaptive penalties, a fitness function 

𝑆 of a constraint-violating solution 𝒙 in a solution set 𝒳 is formulated as Equations 16, 17, and 18. 

𝑆(𝒙) = 𝑓መ(𝒙) + ෍ 𝜆఑𝑣఑(𝒙)

௄

఑ୀଵ

(16)

 𝑓መ(𝒙) = max൛𝑓(𝒙), 𝑓ൟ̅ (17)

𝜆఑ = ห𝑓ห̅
𝑣఑തതത

∑ 𝑣఑തതതଶ௄
఑ୀଵ

(18)

 

Here, the notations 𝑓,̅ 𝑣఑തതത denote the mean objective function value 𝑓 and the mean amount of constraint 

violation 𝑣఑, respectively; and their mean values are averaged of 𝑓 and 𝑣఑ of solutions in the solution set 𝒳. 
Thus, it is possible to mitigate the above deficiency by assigning different penalty coefficients for each 
constraint function and adaptively tuning in response to the objective-function value and each amount of 
constraint violation obtained in the search process. However, because many the penalty-based CHTs do not 
make use of the order relationship between the amount of constraint violation of solutions, it is thought that 
the usefulness of constraint-violating solutions be low.  

4.3.3 Separatist-based CHT 

The separatist-based CHT separates objective-function values 𝑓 and amount of constraint violation 𝑣, and 
evaluates and compares solutions; they can be classified as either switching-based or ranking-based CHT. The 
switching-based CHT selects and uses either of the objective-function value or the amount of constraint 

violation as a fitness 𝑆. Feasibility rule16), stochastic ranking22), 𝜀 constraint method (𝜀CM)23), and MCODE24) 

have proposed in this category. In 𝜀CM, when comparing two solutions 𝒙 and 𝒚, the order relation of fitness 

𝑆 is defined in Equation 19. 

𝑆(𝒙) ≤ 𝑆(𝒚) ⟺ ൜
𝑓(𝒙) ≤ 𝑓(𝒚);  𝑣(𝒙), 𝑣(𝒚) < 𝜀

 𝑣(𝒙) ≤ 𝑣(𝒚); otherwise
 (19) 

Here, 𝜀 > 0 denotes a threshold parameter for the amount of constraint violation and decreases to almost 0 
gradually during the search process, since the search points improve the objective-function value after they 
move to near the feasible region early on. 

The ranking-based CHT uses a fitness 𝑆 based on a total rank in a solution set. The total rank consists 
of rank based on objective-function values and rank based on amount of constraint violation. Global 
competitive ranking (GCR)25), Ho-Shimizu ranking (HSR)26), multiple constraint ranking (MCR)27), and 
TNSDM28) have proposed in this category. In MCR, the fitness function 𝑆(𝒙) of a solution 𝒙 in a solution set 

𝒳 is formulated as Equation 20. 



 

 

𝑆(𝒙) =

⎩
⎪
⎨

⎪
⎧ 𝑅௡ + ෍ 𝑅௩ഉ

௄

఑ୀଵ

;  ℱ ∩ 𝒳 = ∅

 𝑅௙ + 𝑅௡ + ෍ 𝑅௩ഉ

௄

఑ୀଵ

; otherwise

 (20)  

Here, 𝑅௙, 𝑅௩ഉ
, 𝑅௡ denote a rank of objective-function value 𝑓, ranks for each amount of constraint violation 

𝑣఑, and a rank of constraint violation count, respectively; and their ranks are determined from an order 

relation in the solution set 𝒳. Because the separatist-based CHTs make use of the order relation between the 
amount of constraint violation, it is thought that they make better use of constraint-violating solutions than 
penalty-based CHT. 

4.3.4 Multi-objective-based CHT 

The multi-objective-based CHT converts a single-objective constrained optimization problem into a two-

objective (objective-function value 𝑓  and amount of constraint violation 𝑣 ) unconstrained optimization 
problem; and uses evaluations and comparisons of the solution in multi-objective optimization. The terms of 
multi-objective optimization in the multi-objective-based CHT are explained below. Multi-objective 
optimization finds a Pareto optimum set in the objective function space considering trade-off relationship 
between each objective function while the multi-objective-based CHT finds a feasible global optima in the 
space (𝑓, 𝑣). Superiority relation (Pareto dominance) gives superiority or inferiority relation between two 

solutions in the space (𝑓, 𝑣). When two solutions 𝒙, 𝒚 satisfy Equation 21, an order relation between 𝒙 and 

𝒚 is called “𝒙 dominates 𝒚” or “𝒙 is superior to 𝒚”. 

൫𝑓(𝒙) ≤ 𝑓(𝒚) ∧ 𝑣(𝒙) ≤ 𝑣(𝒚)൯ ∧ ൫𝑓(𝒙) < 𝑓(𝒚) ∨ 𝑣(𝒙) < 𝑣(𝒚)൯ (21)  

In a solution set 𝒳 , a solution 𝒙 ∈ 𝒳  to be not dominated by all other solutions 𝒚 ∈ 𝒳  is called non-
dominated solution or Pareto solution. A set of non-dominated solutions in the solution space is called Pareto 
optimum set or Pareto frontier. A feasible solution is located on the 𝑓-axis in the space (𝑓, 𝑣) and means 
weakly Pareto solution. Note that the multi-objective-based CHT aims to find the only feasible global optima 
located on the intersection of the Pareto frontier and the 𝑓-axis in the space (𝑓, 𝑣), not the entire of this 
region. 

The multi-objective-based CHT can be classified as either the Pareto ranking-based or decomposition-
based CHT in the viewpoint of multi-objective optimization approaches. Pareto ranking gives candidate 
solutions a rank-based fitness constructed by superiority relation and crowded distance in the objective-
function space, and is used in NSGA-II29) for multi-objective optimization. The Pareto ranking-based CHT 
uses the fitness based on Pareto ranking in the space (𝑓, 𝑣). However, even if feasible solutions are obtained 
in the search process, they are easily eliminated because they are weakly Pareto solutions. On that point, as 
the Pareto ranking-based CHT preserving some feasible solutions during the search process, the two-phase 
framework30) and the infeasibility driven evolutionary algorithm (IDEA)17) have been proposed. IDEA 
preserves both of feasible solutions and constraint-violating solutions in the search points, and assigns two-
types fitness for each solution set. One fitness of feasible solutions is the objective-function value 𝑓, and the 

other fitness of constraint-violating solutions is a rank 𝑅௣ based on Pareto ranking. In IDEA, when comparing 



 

 

two feasible solutions or two constraint-violating solutions, the order relation of fitness 𝑆  is defined in 
Equation 22.  

𝑆(𝒙) ≤ 𝑆(𝒚) ⟺ ൜
𝑓(𝒙) ≤ 𝑓(𝒚);  𝒙, 𝒚 ∈ ℱ

 𝑅௣(𝒙) ≤ 𝑅௣(𝒚); 𝒙, 𝒚 ∉ ℱ
   (22)  

Decomposition decomposes a multi-objective optimization problem into a set of single-objective 
optimization subproblems and solves them in parallel by a scalar-based fitness function with a different weight 

parameter 𝑤௜ ∈ [0,1]  assigned for each search point 𝒙௜ ; and is used in MOEA/D31) for multi-objective 

optimization. The decomposition-based CHT uses the above problem decomposition in the space (𝑓, 𝑣). 

The scalarizing function 𝑆 of the weighted sum is formulated as Equation 23. 

𝑆(𝒙; 𝑤) = 𝑤𝑓(𝒙) + (1 − 𝑤)𝑣(𝒙) (23)  

Note that MOEA/D for multi-objective optimization assigns the weights to constant value during the search 
process and distributes them uniformly in the objective function space to find the entire of the Pareto frontier, 
but this is not effective of constrained optimization to find the only feasible global optima finally. On that 
point, as the decomposition-based CHT with weight-tuning rule dynamically during the search process, 
DeCODE32) and the adaptive weighted MOEA/D33) have been proposed. DeCODE uses a weight-tuning rule 
dynamically so that the search region is limited from the violation region to the feasible region gradually. The 
adaptive weighted MOEA/D uses a weight-tuning rule adaptively so that the search region is balanced to cover 

the boundary of the feasible region ℱ, and the tuning rules for 𝑤௜ are expressed by Equations 24 and 25. 

𝑤௜(𝑘) = 𝛼(𝑘)
𝑖 − 1

𝑚 − 1
 (24)

𝛼(𝑘 + 1) = ൜
𝛾୳𝛼(𝑘);  𝒙௧(𝑘) ∈ ℱ

 𝛾ୢ𝛼(𝑘); ohterwise
  (25)

 

Here, 𝛼 ∈ [0,1] denotes a variable parameter for controlling the distribution of weights 𝑤௜  in the space 

(𝑓, 𝑣) , 𝒙௧(𝑘)  denotes the search point having 𝑡 -th weight 𝑤௧ . 𝛾୳ > 1, 𝛾ୢ ∈ (0,1)  denote an increasing 

coefficient and a decreasing coefficient, respectively. After updating 𝑤௜ with Equation 24, we revise it so that 

𝑤௜(𝑘) ∈ [𝛿, 1], and after updating 𝛼 with Equation 25, we revise it so that 𝛼(𝑘) ∈ [0,1]6. 
The multi-objective-based CHT makes the most utilization of constraint-violating solutions than the 

penalty-based and the separatist-based CHTs because an effective search works on trade-off regions between 
objective-function value 𝑓 and amount of constraint violation 𝑣 by superiority relation. The Pareto ranking-
based and the decomposition-based CHTs have the following advantages and disadvantages: 

• Pareto ranking-based CHT:  

– Advantage: it is possible to search the trade-off region while not being affected by a difference 

between 𝑓 and 𝑣 scales; or a shape of the Pareto frontier because the fitness 𝑆 is determined 

only from ranks in the space (𝑓, 𝑣). 

                                                 
6  Yasuda et al. (2022)33) gives the following recommended values to for these parameters; 𝛼(1) = 1.0, 𝑡 =

⌊0.8𝑚⌋, 𝛾୳ = 1.001, 𝛾ୢ = 0.999, 𝛿 = 10ିଵହ. 



 

 

– Disadvantage: it is difficult to gain feasible solutions if the Pareto frontier is large in the solution 
space, which the feasible region is narrower than the violation region, because it searches the 
entire of the region uniformly. 

• Decomposition-based CHT:  

– Advantage: it is possible to improve an ability to gain feasible solutions by weight tuning so that 
the search region is limited to a part of the Pareto frontier because solutions converges almost 
surely and the weights corresponds to the Pareto solutions basically. 

– Disadvantage: it is difficult to maintain the limitation in the space (𝑓, 𝑣) as ideal and the 
corresponding relation between the weights and the Pareto solutions if the difference between 

𝑓 and 𝑣 scales is large34); or a scalarization function 𝑆 does not match the shape of the Pareto 
frontier near the optimal solution7. 

Both approaches are complementary, but there is a difference in effectiveness on constrained optimization. 
The Pareto ranking-based CHT preserves some feasible solutions in the search process, but it is relatively 
disadvantaged in finding the only feasible global optima because the search region cannot be limited to the 
part of the Pareto frontier. In contrast, the decomposition-based CHT can search the limited region, and its 
disadvantage is considered less serious than the Pareto ranking-based CHT according to the following 
reasons: 

(i) The difference between 𝑓 and 𝑣 scales can be suppressed by normalization or standardization34).  
(ii) Even if the uniformity of approximation to the Pareto frontier is reduced a little, there is some 

effectiveness. 

In fact, Yasuda et al. (2022)33) confirmed that the adaptive weighted MOEA/D is superior to the separatist-
based CHT and the Pareto ranking-based CHT in terms of both of convergence on a feasible solution and 
global optimization performance thorough numerical simulation. From the above, the decomposition-based 
CHT is considered advantageous in constrained optimization in terms of the ability to gain feasible solutions. 

4.3.5 General comment 

According to the above review, because CHTs use the order relation in the solution set obtained in the search 
process, they have a high affinity for metaheuristics with multi-point and direct-search method. As showing 
Table1, CHTs can be largely classified based on the viewpoint of definition of fitness function and degree of 
utilization of constraint-violating solutions; and especially the multi-objective based CHT makes the most 
utilization of them. But the fitness function 𝑆 in CHTs is deeply related to intensification and diversification-

based search strategy, and transformation invariance; e.g., the monotonic invariance of objective function 𝑓 

and each constraint function 𝑔఑. In the future research, it is desirable to develop and combine metaheuristic 
algorithms and CHTs for constrained BBO considering the above strategy or property totally. 
 

                                                 
7 The scalarizing function of the weighted sum cannot approximate the Pareto frontier uniformly, whose shape is 
not convex (non-convex or disconnected)31). 



 

 

5 Application of BBO 
This section reviews three important examples of BBO applications. First example is on-line operation 
optimization or configuration design for SoS. SoS consists of connected various systems with operational 
autonomy and control autonomy (e.g., distribution system, medical system, power and energy system, or 
railway system). This needs total and data-driven optimization using obtained on-line and uncertain data from 
sensor and state of each system in real time. Demand response maintains the supply-demand balance 
efficiently by providing people with data and financial incentives to indirectly change their behavior and 
demand, such as dynamic pricing in energy management systems35). Even if a state of SoS involves uncertainly 
such as potential to change people’s behavior or demand, BBO can be applied to it. And there is an approach 
to find and design configuration system of SoS36). These problems are formulated as constrained BBO.  

Second example is hyperparameter tuning or optimization for expensive machine learning models. 
Automated machine learning (AutoML) frameworks and deep learning (deep neural networks) have many 
tunable hyperparameters such as very complex parameter architecture37). On that point, parameter-tuning 
techniques has proposed for automating their engineering process. It is shown that these techniques are 
superior to manually tuning or engineering by human in the viewpoint of performance and time comsuming5), 

38); especially neural architecture search is the most successful example39). Hyperparameter tuning problem is 
formulated as constrained BBO. 

Third example is material discovery, design, and optimization for multi-range application. Design of new 
and highly-functional material including raw material or chemical compounds can change all manufacturing 
areas, such as healthcare, medical care, and energy. Industrial biotechnology can realize the production of 
renewable biological resources and the conversion of these resources and waste streams into value added 
products, which alternative energy sources, biopharmaceutical, and high-quality food, by smart genetics and 
cells. The bio-industry subcommittee of Ministry of Economy, Trade, and Industry (METI) in Japan shows 
the following examples as their use cases40): 

(i) Regenerative medicine or gene therapy may cause radical treatments for diseases. 
(ii) In manufacturing process, redesign of cell’s function may improve efficiency of industrial 

production; e.g., transformation from glucose to raw material for high-quality plastics. 

Material discovery problem for these processes is formulated as constrained BBO41). 
 

6 Conclusion 
This article reviewed the main approaches to BBO, especially metaheuristics and constraint handling 
techniques, and provided some applications of BBO. As we shift toward Super Smart Society (Society 5.0) 
or Bioeconomy, real-world systems will grow in scale and complexity such as SOS. Conversely, practical 
system optimization will realize to combine surrounding technologies advancing rapidly. It is desirable to 
develop BBO with an ability to adapt to all of these changes. Given these trends, we believe that SMBO for 
constrained BBO will be increasingly important, and these technologies should be able to adapt to various 
applications such as SOS in the future. 
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